الموضوع: SA Tunguska
عرض مشاركة واحدة

قديم 27-10-09, 01:43 PM

  رقم المشاركة : 4
معلومات العضو
البارزانى
Guest

إحصائية العضو



رسالتي للجميع

افتراضي



 

TUNGUSKA BECOMES MORE EFFECTIVE

For the first time, a combination, in one vehicle, of two weapons systems (missiles and guns) with a common radar-computer suite has been implemented in the Tunguska air defense gun-missile system. The system has received a number of upgrades, and its latest modification, designated the Tunguska-M1, features the performance characteristics which far outweigh those of its predecessors.
نقره لعرض الصورة في صفحة مستقلة The Tunguska-M1 system includes:
- six 2S6M1 self-propelled air defense mounts (combat vehicles);
- six transporter-loaders;
- group SPTA set transporter intended to provide six combat vehicles with spare parts;
- electronic equipment routine repair and maintenance vehicle;
- mechanical and hydraulic systems maintenance vehicle;
- wheeled and tracked chassis repair and maintenance vehicle;
- missile testing and maintenance vehicle.
The 2S6M1 self-propelled mount (SPM) is designed to provide air defense for motorized infantry and armor units in all types of military operations and also to protect various installations from air attacks. It is highly effective against low-flying surprise air targets, including hovering helicopters, and is capable of engaging targets before they are within the effective range of their weapons.
The 2S6M1 SPM is basically a lightly armored tracked vehicle carrying a rotary turret. An armored hull protects the vehicle crew and equipment from small arms fire and ****l splinters.
The vehicle chassis has a high degree of structural commonality with tracked vehicles of intermediate weight category. The hydromechanical transmission, hydropneumatic suspension and variable ground clearance ensure the vehicle's high cross-country ability, agility and smooth run on any type of terrain, making it possible to deliver fire on the move without reducing the speed. The hull accommodates the driver's compartment; engine; power transmission; electrical equipment; power supply system; course, pitch and roll angle gyroscopic equipment; turret traverse hydraulic drive; internal communications system; life support equipment; vision devices; and fire fighting equipment.
Mounted on either side of the turret are tipping units, fitted with automatic cannons and missile launchers. The front of the turret carries a tracking radar antenna pedestal and the rear, a target detection and designation radar antenna pedestal. The turret interior accommodates three crew members (commander, operator and gunner); equipment of the radar and digital computer systems; electronic equipment of the pitch, roll and course angle measurement system; weapons elevation hydraulic drive; optical sight complete with the laying and stabilization system; missile coordinates discrimination unit and missile control command coder; internal and external communications equipment; navigation equipment; NBC detection system; ventilation and air-conditioning system; ammunition feed system; and ammunition load.
The radar system includes a target detection and designation radar, ground radar interrogator and a tracking radar. The radar system detects, identifies and tracks targets, determines their dynamic parameters and sends them to the digital computer which computes the control and firing commands for the weapons and the guidance commands for the missile.
The digital computer is designed to generate control and stabilization commands for the weapons systems, optics and radars, as well as to check the SPM systems for functioning. The computer stabilizes the line of sight and the line of elevation, generates missile guidance commands and computes the time of impact. While generating the weapons control commands, the computer allows for weather conditions and muzzle velocity, and while performing the system's scheduled checks, it runs a self test, analyzes the missile control circuits and carries out an overall SPM checkout.
The optical sight, weapons laying and stabilization system, and the coordinates discrimination equipment serve to detect and track targets over an optical channel, determine dynamic parameters of the tracked target and of the fired missile, and send this information to the onboard computer. The coder is designed to convert missile guidance and control commands to coded pulse trains and furnish them to the radar for subsequent transmission to the missile over a radio link.
In motion, the vehicle's pitch, roll and course angle measurement system is activated. The optical, radar and weapons systems are stabilized on the basis of the data generated by the measurement system. The hydraulic laying drives are designed to turn the turret in the horizontal plane and operate cannons and missile launch guides in the vertical plane.
The navigation equipment continually generates vehicle coordinates and sends them to the onboard computer.
The internal and external communications equipment provides reliable internal communication between crew members and with external parties. The vision devices are intended for battlefield surveillance at any time of day or night.
The ventilation and air-conditioning system maintains the temperature required for operation of electronic equipment and in the driver's compartment. The firefighting equipment serves to extinguish fires in the vehicle power plant compartment.
The NBC equipment allows the crew to continue with its mission while crossing contaminated areas and enhances the vehicle survivability under nuclear attack.
The power supply system feeds the vehicle equipment with +27 V DC and 220 V 400 Hz three-phase AC voltages.
The vehicle belt-fed cannons fire a 30mm unified round. The twin barrel cannon pattern provides for a rate of fire of 5,000 rds/min. The evaporation-type liquid cooling system makes the maintenance of the cannons easier, reduces their overall weight and increases the consistency of fire.
A surface-to-air missile (SAM) is held in a container-launcher. It is a bicaliber missile with a separable booster. The launch weight of the missile has been reduced by one half in comparison with the single-stage missiles having similar characteristics. The booster accelerates the missile to a speed thrice the velocity of sound. The sustainer stage has a smaller diameter. It maintains a high speed throughout the flight, making its optical guidance possible. The missile warhead is of a fragmentation rod type. It is characterized by a high length-to-diameter ratio and large weight. The missile is steered towards its target semiautomatically over radio command and optical links. A luminous flux emitted by a light source, carried by the missile, enters an optical detector which is mounted coaxially with the optical sight, where it is converted to an electrical signal proportional to the amount of missile deviation from the line of sight. The electrical signal is fed to the digital computer which generates correction commands. Then, the guidance commands are coded and sent to the missile as coded pulse trains via the target tracking radar.
The missile onboard equipment decodes the incoming pulse trains and generates commands for the control surface actuator. Consequently, the missile is guided precisely along the sight line. The missile impact and proximity fuzes ensure that the warhead is detonated either on impact or in the event of a near miss of up to 5 m.
In operational environments the SPM provides for:
- circular surveillance of air space;
- search for, detection and identification of air threats;
- air threat selection, lockon and tracking either via the radar or optical channel;
- engagement of air targets, including hovering helicopters and aircraft flying at a speed of up to 500 m/s, with missiles or cannons.
The Tunguska self-propelled air defense system can perform missions independently or as part of a unit, on the move or at a halt, at any time of day or night and inany weather. It is equally effective against moving and fixed ground and waterborne threats, as well as against paradropped targets.
Generally, in the enemy countermeasures environment, the fighting efficiency of the Tunguska-M1 system is 1.3 to 1.5 times more effective than the Tunguska-M.

 

 


   

رد مع اقتباس